
ADVANCING IMPLEMENTATION OF
MULTI-ROBOT WORKCELLS
There is a great opportunity to have multiple robots work together in many application
domains, including manufacturing and logistics. The potential performance advantage
of being able to use multiple robots is similar to the benefits of being able to use
multiple people to complete a task.

27 Wormwood St Ste 110, Boston, MA 02210 | 617.302.6330 | rtr.ai | sales@rtr.ai

DEPLOYMENT PROCESS
While many of us have seen

multi-robot workcells, we do not see

the vast amount of time required to

deploy them and the performance

opportunities that they miss. Once the

number of robots has been chosen,

there are several challenging problems

that must be solved, and they all involve

choreographing the work. This work can

be divided up into tasks (e.g., pick up

object X or weld at location Y), and each

task requires a robot to reach a target

pose and spend some amount of time

there performing an action. Engineers

must solve the following interrelated

challenges to achieve the best possible

performance, often referred to as cycle

time, without collisions:

Placing
The location, position and angle of each robot and base

should be placed where it can maximize its accessibility

to its targets and tasks.

Allocating
Every robot has a different set of capabilities (reach,

function, tool-tip, etc.). Engineers determine which robot

will accomplish which set of tasks, while understanding

the limitations and complexities of each choice.

Sequencing

This is the order and priority of each robot allocated to

complete the given tasks.

Robot Programming
Once tasks have been allocated and sequenced, a

program is written to instruct each robot where, when

and which way to go.

Avoiding Collisions
Programmers need to guarantee that robots avoid

collisions while performing various tasks. Detecting and

rerouting a robot to avoid collisions during a task has

been computationally difficult and slow. Due to the

complexity, programmers use conservative practices,

such as pauses, interlocks and interference zones as a

way to avoid collisions. Rather than using these tedious

and performance hindering solutions, developers now

have the option of using Realtime Robotics’ technology.

Realtime Robotics 2

Writing robot programs that provide collision-free motion plans is very hard, and producing

optimized motion plans—including optimized placement, allocation and sequencing—is

infeasible for engineers. Current robot deployments require

time-consuming processes to test and ensure that robots avoid all

collisions. Due to the complexity of where multiple robots will be at

any time, it is very difficult to produce collision-free plans. If there is a

collision during testing (or worse during runtime), then an engineer

modifies the robot program by either adding interlocks, pauses or

changing the waypoints between targets. This time-consuming

process continues until the robots pass all tests to be deployed.

The current process of modifying the software (displayed left) with

iterative changes can degrade performance beyond what is

acceptable, forcing the entire process to begin again from placement.

It can require many weeks to produce even a viable collision-free

solution; improving performance beyond the minimum viable has

been prohibitively slow, and results have still been far from optimal.

Realtime Robotics has developed a proprietary technology to

quickly and autonomously produce highly optimized motion

plans. Realtime’s technology drastically reduces engineering testing

and development time required. Our toolkit allows users to intuitively

add their virtual implementation, query tests and automatically

output code. The code provided from the toolkit eliminates the need

to manually write and iterate custom software. Realtime equips

customers with a simple file for implementation rather than having

weeks to months to produce less versatile results.

REAL PROGRESS

Realtime Empowered

Configure robots,
workcell and

points of interest

Generate Task(s)

Run Realtime
Optimization

no

Current Technology

Task allocation

Task sequencing

Robot
programming

Fast enough?

Collision free?

yes

yes
no

yes

Robot placement

Realtime Robotics 3

REAL APPLICATION

REAL RESULTS
Carried out by the Realtime Robotics optimization framework

 Customer Realtime Realtime Realtime

Paramater Baseline Result 1 Result 2 Result 3

Home poses Default Default Default Optimal

Robot placement Default Default Optimal Optimal

Task plan Default/Manual Optimal Optimal Optimal

Cycle time 21.43 seconds 19.03 seconds 13.87 seconds 12.41 seconds

Reduction -- 11.20% 35.27% 42.09%

Workcell efficiency 75.20% 85.27% 95.67% 95..34%

Total inactive time 21.26 seconds 11.21 seconds 2.4 seconds 2.31 seconds

Collision avoidance Pass* Pass Pass Pass

OLP time 13 weeks 3 weeks 1 week 1 week

 “Default” parameters result from the original project specification.
 “Manual” parameters are generated by a manual tuning process.
 “Optimal” parameters are the result of the optimization process .
 * Collision avoidance requires all robots to have accurate time synchronization

75%+ reduction in programming time/costs:
A global auto manufacturer had a 4-robot workcell in which the robots needed to reach 22 targets

and spend a half-second at each target to perform the desired task. Their automation engineer

spent 13 weeks iterating to a cycle time of 21.4 seconds. Realtime’s optimization technology

achieved a cycle time of only 12.4 seconds, and it took only one week to achieve this result. With

Realtime’s solution, the robots were doing useful work 95% of the time, compared to only 75% of the

time for the manual solution.

27 Wormwood St Ste 110, Boston, MA 02210 | 617.302.6330 | rtr.ai | sales@rtr.ai

Realtime Robotics 4

